Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Theor Biol ; 587: 111817, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599566

RESUMEN

The recent global COVID-19 pandemic resulted in governments enacting non-pharmaceutical interventions (NPIs) targeted at reducing transmission of SARS-CoV-2. But the NPIs also affected the transmission of viruses causing non-target seasonal respiratory diseases, including influenza and respiratory syncytial virus (RSV). In many countries, the NPIs were found to reduce cases of such seasonal respiratory diseases, but there is also evidence that subsequent relaxation of NPIs led to outbreaks of these diseases that were larger than pre-pandemic ones, due to the accumulation of susceptible individuals prior to relaxation. Therefore, the net long-term effects of NPIs on the total disease burden of non-target diseases remain unclear. Knowledge of this is important for infectious disease management and maintenance of public health. In this study, we shed light on this issue for the simplified scenario of a set of NPIs that prevent or reduce transmission of a seasonal respiratory disease for about a year and are then removed, using mathematical analyses and numerical simulations of a suite of four epidemiological models with varying complexity and generality. The model parameters were estimated using empirical data pertaining to seasonal respiratory diseases and covered a wide range. Our results showed that NPIs reduced the total disease burden of a non-target seasonal respiratory disease in the long-term. Expressed as a percentage of population size, the reduction was greater for larger values of the basic reproduction number and the immunity loss rate, reflecting larger outbreaks and hence more infections averted by imposition of NPIs. Our study provides a foundation for exploring the effects of NPIs on total disease burden in more-complex scenarios.

2.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
3.
Math Biosci ; 369: 109131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113973

RESUMEN

Research into the processes governing species richness has often assumed that the environment is fixed, whereas realistic environments are often characterised by random fluctuations over time. This temporal environmental stochasticity (TES) changes the demographic rates of species populations, with cascading effects on community dynamics and species richness. Theoretical and applied studies have used process-based mathematical models to determine how TES affects species richness, but under a variety of frameworks. Here, we critically review such studies to synthesise their findings and draw general conclusions. We first provide a broad mathematical framework encompassing the different ways in which TES has been modelled. We then review studies that have analysed models with TES under the assumption of negligible interspecific interactions, such that a community is conceptualised as the sum of independent species populations. These analyses have highlighted how TES can reduce species richness by increasing the frequency at which a species becomes rare and therefore prone to extinction. Next, we review studies that have relaxed the assumption of negligible interspecific interactions. To simplify the corresponding models and make them analytically tractable, such studies have used mean-field theory to derive fixed parameters representing the typical strength of interspecific interactions under TES. The resulting analyses have highlighted community-level effects that determine how TES affects species richness, for species that compete for a common limiting resource. With short temporal correlations of environmental conditions, a non-linear averaging effect of interspecific competition strength over time gives an increase in species richness. In contrast, with long temporal correlations of environmental conditions, strong selection favouring the fittest species between changes in environmental conditions results in a decrease in species richness. We compare such results with those from invasion analysis, which examines invasion growth rates (IGRs) instead of species richness directly. Qualitative differences sometimes arise because the IGR is the expected growth rate of a species when it is rare, which does not capture the variation around this mean or the probability of the species becoming rare. Our review elucidates key processes that have been found to mediate the negative and positive effects of TES on species richness, and by doing so highlights key areas for future research.


Asunto(s)
Biodiversidad , Ecosistema , Modelos Teóricos , Probabilidad
4.
Proc Natl Acad Sci U S A ; 120(51): e2309034120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079550

RESUMEN

There is an urgent need for reliable data on the impacts of deforestation on tropical biodiversity. The city-state of Singapore has one of the most detailed biodiversity records in the tropics, dating back to the turn of the 19th century. In 1819, Singapore was almost entirely covered in primary forest, but this has since been largely cleared. We compiled more than 200 y of records for 10 major taxonomic groups in Singapore (>50,000 individual records; >3,000 species), and we estimated extinction rates using recently developed and novel statistical models that account for "dark extinctions," i.e., extinctions of undiscovered species. The estimated overall extinction rate was 37% (95% CI [31 to 42%]). Extrapolating our Singapore observations to a future business-as-usual deforestation scenario for Southeast Asia suggests that 18% (95% CI [16 to 22%]) of species will be lost regionally by 2100. Our extinction estimates for Singapore and Southeast Asia are a factor of two lower than previous estimates that also attempted to account for dark extinctions. However, we caution that particular groups such as large mammals, forest-dependent birds, orchids, and butterflies are disproportionately vulnerable.


Asunto(s)
Mariposas Diurnas , Animales , Singapur , Conservación de los Recursos Naturales , Extinción Biológica , Biodiversidad , Mamíferos
5.
Bull Math Biol ; 85(12): 124, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962713

RESUMEN

Many infectious diseases exist as multiple variants, with interactions between variants potentially driving epidemiological dynamics. These diseases include dengue, which infects hundreds of millions of people every year and exhibits complex multi-serotype dynamics. Antibodies produced in response to primary infection by one of the four dengue serotypes can produce a period of temporary cross-immunity (TCI) to infection by other serotypes. After this period, the remaining antibodies can facilitate the entry of heterologous serotypes into target cells, thus enhancing severity of secondary infection by a heterologous serotype. This represents antibody-dependent enhancement (ADE). In this study, we analyze an epidemiological model to provide novel insights into the importance of TCI and ADE in producing cyclic outbreaks of dengue serotypes. Our analyses reveal that without TCI, such cyclic outbreaks are synchronous across serotypes and only occur when ADE produces high transmission rates. In contrast, the presence of TCI allows asynchronous cycles of serotypes by inducing a time lag between recovery from primary infection by one serotype and secondary infection by another, with such cycles able to occur without ADE. Our results suggest that TCI is a fundamental driver of asynchronous cycles of dengue serotypes and possibly other multi-variant diseases.


Asunto(s)
Coinfección , Dengue , Humanos , Serogrupo , Conceptos Matemáticos , Modelos Biológicos , Dengue/epidemiología
6.
Blood Adv ; 7(23): 7346-7357, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874914

RESUMEN

Deleterious germ line variants in DDX41 are a common cause of genetic predisposition to hematologic malignancies, particularly myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). Targeted next-generation sequencing was performed in a large cohort of sequentially recruited patients with myeloid malignancy, covering DDX41 as well as 30 other genes frequently mutated in myeloid malignancy. Whole genome transcriptome sequencing data was analyzed on a separate cohort of patients with a range of hematologic malignancies to investigate the spectrum of cancer predisposition. Altogether, 5737 patients with myeloid malignancies were studied, with 152 different DDX41 variants detected. Multiple novel variants were detected, including synonymous variants affecting splicing as demonstrated by RNA-sequencing. The presence of a somatic DDX41 variant was highly associated with DDX41 germ line variants in patients with MDS and AML, and we developed a statistical approach to incorporate the co-occurrence of a somatic DDX41 variant into germ line variant classification at a very strong level (as per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines). Using this approach, the MDS cohort contained 108 of 2865 (3.8%) patients with germ line likely pathogenic/pathogenic (LP/P) variants, and the AML cohort 106 of 2157 (4.9%). DDX41 LP/P variants were markedly enriched in patients with AML and MDS compared with those in patients with myeloproliferative neoplasms, B-cell neoplasm, and T- or B-cell acute lymphoblastic leukemia. In summary, we have developed a framework to enhance DDX41 variant curation as well as highlighted the importance of assessment of all types of genomic variants (including synonymous and multiexon deletions) to fully detect the landscape of possible clinically relevant DDX41 variants.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , ARN Helicasas DEAD-box/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Genómica
7.
Nature ; 618(7965): 537-542, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286612

RESUMEN

A central goal in ecology is to understand what maintains species diversity in local communities. Classic ecological theory1,2 posits that niches dictate the maximum number of species that can coexist in a community and that the richness of observed species will be below this maximum only where immigration is very low. A new alternative theory3,4 is that niches, instead, dictate the minimum number of coexisting species and that the richness of observed species will usually be well above this because of ongoing immigration. We conducted an experimental test to discriminate between these two unified theories using a manipulative field experiment with tropical intertidal communities. We found, consistent with the new theory, that the relationship of species richness to immigration rate stabilized at a low value at low immigration rates and did not saturate at high immigration rates. Our results suggest that tropical intertidal communities have low niche diversity and are typically in a dispersal-assembled regime where immigration is high enough to overfill the niches. Observational data from other studies3,5 suggest that these conclusions may generalize to other ecological systems. Our new experimental approach can be adapted for other systems and be used as a 'niche detector' and a tool for assessing when communities are niche versus dispersal assembled.


Asunto(s)
Migración Animal , Biodiversidad , Ecología , Modelos Biológicos , Ecología/métodos , Dinámica Poblacional , Clima Tropical , Olas de Marea , Animales
8.
Ecol Lett ; 26(6): 1025-1026, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002799

RESUMEN

In a critique of our recent review on measuring habitat complexity in ecology, Madin et al. (2023) advocate the use of fractal dimension in ecology and defend their geometric constraint theory of habitat complexity. We explain the flaws in their arguments and highlight points where they misinterpreted our statements.


Asunto(s)
Ecología , Ecosistema
9.
Oecologia ; 201(4): 887-900, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36977811

RESUMEN

The question of whether biodiversity conservation and carbon conservation can be synergistic hinges on the form of the biodiversity-productivity relationship (BPR), a fundamental ecological pattern. The stakes are particularly high when it comes to forests, which at a global level comprises a large fraction of both biodiversity and carbon. And yet, in forests, the BPR is relatively poorly understood. In this review, we critically evaluate research on forest BPRs, focussing on the experimental and observational studies of the last 2 decades. We find general support for a positive forest BPR, suggesting that biodiversity and carbon conservation are synergistic to a degree. However, we identify several major caveats: (i) although, on average, productivity may increase with biodiversity, the highest-yielding forests are often monocultures of very productive species; (ii) productivity typically saturates at fewer than ten species; (iii) positive BPRs can be driven by some third variable, in particular stem density, instead of a causal arrow from biodiversity to productivity; (iv) the BPR's sign and magnitude varies across spatial grains and extents, and it may be weak at scales relevant to conservation; and (v) most productivity estimates in forests are associated with large errors. We conclude by explaining the importance of these caveats for both conservation programmes focussed on protection of existing forests and conservation programmes focussed on restoring or replanting forests.


Asunto(s)
Biodiversidad , Bosques , Conservación de los Recursos Naturales
10.
Nat Commun ; 14(1): 1089, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841818

RESUMEN

Ecology lacks a holistic approach that can model phenomena across temporal and spatial scales, largely because of the challenges in modelling systems with a large number of interacting constituents. This hampers our understanding of complex ecosystems and the impact that human interventions (e.g., deforestation, wildlife harvesting and climate change) have on them. Here we use density functional theory, a computational method for many-body problems in physics, to develop a computational framework for ecosystem modelling. Our methods accurately fit experimental and synthetic data of interacting multi-species communities across spatial scales and can project to unseen data. As the key concept we establish and validate a cost function that encodes the trade-offs between the various ecosystem components. We show how this single general modelling framework delivers predictions on par with established, but specialised, approaches for systems from predatory microbes to territorial flies to tropical tree communities. Our density functional framework thus provides a promising avenue for advancing our understanding of ecological systems.


Asunto(s)
Ecología , Ecosistema , Animales , Humanos , Teoría Funcional de la Densidad , Árboles , Animales Salvajes
11.
Theor Popul Biol ; 149: 12-26, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36521555

RESUMEN

Neutral models in ecology assume that all species are demographically equivalent, such that their abundances differ ultimately because of demographic stochasticity rather than selection. In spite of their simplicity, neutral models have been found to accurately reproduce static patterns of biodiversity for diverse communities. However, the same neutral models have been found to exhibit species abundance dynamics that are far too slow compared to reality, resulting in poor fits to temporally dynamic patterns of biodiversity. Here, we show that one of the root causes of these slow dynamics is the additional assumption that a community has reached an equilibrium with a fixed community size, with species that have a net growth rate close to zero. We removed this additional assumption by constructing and analyzing a neutral model with an expected community size that can change over time and is not necessarily at equilibrium, which thus allows the historical formation of a community to be represented explicitly. Our analysis demonstrated that for the general scenario where a small community rapidly grows in size to a carrying capacity, representing recovery from ecological disturbance or assembly of a new community, the model produced much larger changes in species abundances and much shorter species ages than a neutral model at an equilibrium with fixed community size. In addition, the species abundance distribution was biphasic with a subset of abundant species arising from a founder effect. We confirmed these new results in applications of the new model to the specific scenario of recovery of the Amazon tree community after the end-Cretaceous bolide impact, which involved periods of increasing and decreasing community size. We conclude that incorporating transient dynamics in neutral models improves realism by allowing explicit consideration of how a community is formed over realistic time-scales.


Asunto(s)
Modelos Biológicos , Modelos Teóricos , Dinámica Poblacional , Biodiversidad , Conservación de los Recursos Naturales
12.
Sci Rep ; 12(1): 20252, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424400

RESUMEN

Human cooperation (paying a cost to benefit others) is puzzling from a Darwinian perspective, particularly in groups with strangers who cannot repay nor are family members. The beneficial effects of cooperation typically increase nonlinearly with the number of cooperators, e.g., increasing returns when cooperation is low and diminishing returns when cooperation is high. Such nonlinearity can allow cooperation between strangers to persist evolutionarily if a large enough proportion of the population are already cooperators. However, if a lone cooperator faces a conflict between the group's and its own interests (a social dilemma), that raises the question of how cooperation arose in the first place. We use a mathematically tractable evolutionary model to formalise a chronological narrative that has previously only been investigated verbally: given that ancient humans interacted mostly with family members (genetic homophily), cooperation evolved first by kin selection, and then persisted in situations with nonlinear benefits as homophily declined or even if interactions with strangers became the norm. The model also predicts the coexistence of cooperators and defectors observed in the human population (polymorphism), and may explain why cooperators in behavioural experiments prefer to condition their contribution on the contributions of others (conditional cooperation in public goods games).


Asunto(s)
Conducta Cooperativa , Teoría del Juego , Humanos , Evolución Biológica , Medio Social
13.
Ecol Lett ; 25(10): 2269-2288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977844

RESUMEN

Habitat complexity has been considered a key driver of biodiversity and other ecological phenomena for nearly a century. However, there is still no consensus over the definition of complexity or how to measure it. Up-to-date and clear guidance on measuring complexity is urgently needed, particularly given the rise of remote sensing and advent of technologies that allow environments to be scanned at unprecedented spatial extents and resolutions. Here we review how complexity is measured in ecology. We provide a framework for metrics of habitat complexity, and for the related concept of spatial heterogeneity. We focus on the two most commonly used complexity metrics in ecology: fractal dimension and rugosity. We discuss the pros and cons of these metrics using practical examples from our own empirical data and from simulations. Fractal dimension is particularly widely used, and we provide a critical examination of it drawing on research from other scientific fields. We also discuss informational metrics of complexity and their potential benefits. We chart a path forward for research on measuring habitat complexity by presenting, as a guide, sets of essential and desirable criteria that a metric of complexity should possess. Lastly, we discuss the applied significance of our review.


Asunto(s)
Ecología , Ecosistema , Biodiversidad
14.
Proc Biol Sci ; 289(1973): 20220088, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35440208

RESUMEN

Estimating the total number of species on Earth has been a longstanding pursuit. Models project anywhere between 2 and 10 million species, and discovery of new species continues to the present day. Despite this, we hypothesized that our current knowledge of phylogenetic diversity (PD) may be almost complete because new discoveries may be less phylogenetically distinct than past discoveries. Focusing on birds, which are well studied, we generated a robust phylogenetic tree for most extant species by combining existing published trees and calculated each discovery's marginal contribution to known PD since the first formal species descriptions in 1758. We found that PD contributions began to plateau in the early 1900s, about half a century earlier than species richness. Relative contributions of each phylogenetic order to known PD shifted over the first 150 years, with a growing contribution of the hyper-diverse perching birds (Passeriformes) in particular, but after the early 1900s this has remained relatively stable. Altogether, this suggests that our knowledge of the evolutionary history of extant birds is mostly complete, with few discoveries of high evolutionary novelty left to be made, and that conclusions of studies using avian phylogenies are likely to be robust to future species discoveries.


Asunto(s)
Evolución Biológica , Aves , Animales , Biodiversidad , Aves/genética , Filogenia
15.
J Theor Biol ; 538: 111043, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35120921

RESUMEN

The stress-gradient hypothesis (SGH) in ecology predicts that the strength and frequency of positive interspecific interactions, including processing chain commensalisms (PCCs), increase with environmental stress. Although observed in some empirical PCC studies, a recent theoretical study of PCCs using a consumer-resource-type model found that, given the model's assumptions, the SGH never occurs. To investigate if this is a true reflection of PCCs or merely an artefact of the model, in this study, we modified this earlier model formulation by incorporating generalized, monotonically increasing resource uptake functions in place of linear functions, and added a term to represent the spontaneous leakage of the downstream resource to the environment. Mathematical analyses of the model revealed two key insights: 1) the specific algebraic forms of the functional responses of the species in a PCC do not affect the long-term behaviour of the system; 2) the SGH can occur in a facilitative interaction only if the consumer-independent leakage rate of the downstream resource exceeds the consumer-independent input rate. The first insight shows that the outcomes of consumer-resource interactions are robust to details of the functional responses when the functional responses are monotonically increasing, while the second insight shows that the SGH is not a universal feature of positive interactions but instead holds only under a well-defined set of conditions which may vary between PCC interactions and the environmental contexts in which they take place.


Asunto(s)
Ecología , Simbiosis , Ecosistema , Estrés Fisiológico
16.
Trends Ecol Evol ; 36(2): 151-163, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33589047

RESUMEN

Half a century ago, Janzen and Connell hypothesized that the high tree species diversity in tropical forests is maintained by specialized natural enemies. Along with other mechanisms, these can cause conspecific negative density dependence (CNDD) and thus maintain species diversity. Numerous studies have measured proxies of CNDD worldwide, but doubt about its relative importance remains. We find ample evidence for CNDD in local populations, but methodological limitations make it difficult to assess if CNDD scales up to control community diversity and thereby local and global biodiversity patterns. A combination of more robust statistical methods, new study designs, and eco-evolutionary models are needed to provide a more definite evaluation of the importance of CNDD for geographic variation in plant species diversity.


Asunto(s)
Árboles , Clima Tropical , Biodiversidad , Bosques , Plantones
17.
Conserv Biol ; 35(1): 239-248, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32469421

RESUMEN

Extinctions of undiscovered species (undetected extinctions) constitute a portion of biodiversity loss that is often ignored. We compared the performance of 2 models of undetected extinctions - Tedesco and SEUX - when estimating undetected extinctions with both simulated and real-world data. We generated simulated data by considering a birth-death process in which less abundant species were more likely to go extinct. When detection rates were higher for common species, the 2 models underestimated the true number of undetected extinctions by up to 88.7%, and when detection rates were independent of abundance, the 2 models performed better; the SEUX model had an average bias of +3.1% and the Tedesco model had an average bias of -62.3%. We applied the models to 8 real-world data sets (e.g., Australian amphibians, Australian birds, North American bivalves) and found that true extinctions may be from 15% to 180% higher than observed values. For 6 of the 8 data sets, the SEUX model yielded absolute estimates that were 5.7-66.8% lower than those of the Tedesco model. We mainly attributed this difference to the SEUX model's assumption that there are no undetected extant species currently. We assessed the accuracy of the models' estimates with a logistic regression to test whether detection and extinction rates were uncorrelated across species. Rates were correlated for 3 of the 8 data sets; species discovered later had a higher probability of being extinct, suggesting that extinction numbers could be even higher for these groups. Despite caveats associated with the models, the evidence from both show biodiversity loss in these groups may be more severe than what has been documented.


Cuantificación del Desempeño Relativo de Dos Modelos de Extinción No Detectada Resumen Las extinciones no detectadas constituyen una porción de la pérdida de la biodiversidad que comúnmente pasa desapercibida. Comparamos el desempeño de dos modelos de extinciones no detectadas - Tedesco y SEUX - durante su estimación de extinciones no detectadas tanto con datos simulados como reales. Generamos datos simulados mediante la consideración de un proceso de nacimiento-muerte en el cual las especies menos abundantes tenían una mayor probabilidad de extinguirse. Cuando las tasas de detección fueron mayores para las especies comunes, los dos modelos subestimaron el número real de extinciones no detectadas hasta en un 88.7%; cuando las detecciones fueron independientes a la abundancia, ambos modelos tuvieron un mejor desempeño. El modelo SEUX tuvo un sesgo promedio de +3.1% y el modelo Tedesco uno de -62.3%. Aplicamos estos modelos en ocho conjuntos de datos reales (p. ej.: anfibios australianos, aves australianas, bivalvos norteamericanos) y descubrimos que las extinciones verdaderas podrían ser desde 15% a 180% más altas que los valores observados. Para seis de los ocho conjuntos de datos, el modelo SEUX produjo estimaciones absolutas que fueron entre 5.7% y 66.8% más bajas que las producidas por el modelo Tedesco. Esta diferencia la atribuimos principalmente a la suposición del modelo SEUX de que actualmente no existen especies no detectadas. Evaluamos la certeza de las estimaciones de cada modelo con una regresión logística para comprobar si las tasas de detección y extinción no tenían correlación en todas las especies. Las tasas tuvieron correlación en tres de los ocho conjuntos de datos; las especies descubiertas más tarde tuvieron una probabilidad más alta de estar extintas, lo que sugiere que los datos de extinción podrían ser mayores para estos grupos. A pesar de las salvedades asociadas a estos modelos, la evidencia de ambos muestra que la pérdida de biodiversidad en estos grupos podría ser más severa de lo que se ha documentado hasta ahora.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Animales , Australia , Biodiversidad , Aves
18.
Am Nat ; 196(5): 649-661, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33064583

RESUMEN

AbstractA goal of ecology is to identify the stabilizing mechanisms that maintain species diversity in the face of competitive exclusion and drift. For tropical forest tree communities, it has been hypothesized that high diversity is maintained via Janzen-Connell effects, whereby host-specific natural enemies prevent any one species from becoming too abundant. Here we explore the plausibility of this hypothesis with theoretical models. We confirm a previous result that when added to a model with drift but no competitive exclusion-that is, a neutral model where intrinsic fitnesses are perfectly equalized across species-Janzen-Connell effects maintain very high species richness that scales strongly with community size. However, when competitive exclusion is introduced-that is, when intrinsic fitnesses vary across species-the number of species maintained by Janzen-Connell effects is substantially reduced and scales much less strongly with community size. Because fitness variation is pervasive in nature, we conclude that the potential of Janzen-Connell effects to maintain diversity is probably weak and that the mechanism does not yet provide a sufficient explanation for the observed high diversity of tropical forest tree communities. We also show that, surprisingly, dispersal limitation can further reduce the ability of Janzen-Connell effects to maintain diversity.


Asunto(s)
Biodiversidad , Bosques , Clima Tropical , Biota , Modelos Teóricos , Árboles
19.
Conserv Biol ; 34(5): 1229-1240, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32181936

RESUMEN

Extinction is a key issue in the assessment of global biodiversity. However, many extinction rate measures do not account for species that went extinct before they could be discovered. The highly developed island city-state of Singapore has one of the best-documented tropical floras in the world. This allowed us to estimate the total rate of floristic extinctions in Singapore since 1822 after accounting for sampling effort and crypto extinctions by collating herbaria records. Our database comprised 34,224 specimens from 2076 native species, of which 464 species (22%) were considered nationally extinct. We assumed that undiscovered species had the same annual per-species extinction rates as discovered species and that no undiscovered species remained extant. With classical and Bayesian algorithms, we estimated that 304 (95% confidence interval, 213-414) and 412 (95% credible interval, 313-534) additional species went extinct before they could be discovered, respectively; corresponding total extinction rate estimates were 32% and 35% (range 30-38%). We detected violations of our 2 assumptions that could cause our extinction estimates, particularly the absolute numbers, to be biased downward. Thus, our estimates should be treated as lower bounds. Our results illustrate the possible magnitudes of plant extirpations that can be expected in the tropics as development continues.


Tasa de Extinción de Plantas Descubiertas y No Descubiertas en Singapur Resumen La extinción es un tema importante para la valoración de la biodiversidad global. Sin embargo, muchas medidas de la tasa de extinción no consideran a las especies que se extinguieron antes de que pudieran ser descubiertas. Singapur, la ciudad-estado isleña altamente desarrollada, tiene una de las floras mejor documentadas del mundo. Esto nos permitió estimar la tasa total de las extinciones florísticas en Singapur desde 1822 después de considerar el esfuerzo de muestreo y las criptoextinciones cuando recopilamos los registros de herbarios. Nuestra base de datos incluyó 34,224 especímenes de unas 2,076 especies nativas, de las cuales 464 especies (22%) estaban consideradas como extintas a nivel nacional. Asumimos que las especies no descubiertas tuvieron la misma tasa anual de extinción por especie que las especies descubiertas y que ninguna especie no descubierta permanecía en existencia. Con algoritmos clásicos y bayesianos, respectivamente, estimamos que 304 (95% IC 213-414) y 412 (95% IC 313-534) especies adicionales se extinguieron antes de que fueran descubiertas; las estimaciones correspondientes de la tasa de extinción total fueron 32% y 35% (rango de 30-38%). Detectamos violaciones en nuestras dos suposiciones que podrían causar que nuestras estimaciones de extinción, particularmente los números absolutos, tuvieran un sesgo hacia abajo. Por lo tanto, nuestras estimaciones deberían ser tratadas como límites inferiores. Nuestros resultados ilustran las magnitudes posibles de las extirpaciones de plantas que pueden esperarse en los trópicos conforme el desarrollo continúa.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Teorema de Bayes , Biodiversidad , Singapur
20.
Ecol Lett ; 23(1): 160-171, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31698546

RESUMEN

Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.


Asunto(s)
Biodiversidad , Árboles , Biota , Características de la Residencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...